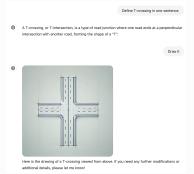
GEOAI FOR URBAN MOBILITY: PROBLEMS AND PROJECTS

GSV FORUM KI IN DER MOBILITÄT 2025

Krzysztof Janowicz

GeoAI? 000

- GeoAl blends Al, spatial data science, geography, geosciences, and cognitive science to detect, describe, and predict geo-processes.
- GeoAl is not a one-way street: it utilizes Al to solve geographic problems and also develops new theories, models, and methods that advance the broader field of Al.
- GeoAl introduces spatial thinking into mainstream Al —making models aware of place, distance, and context.
- GeoAl draws on both knowledge-based (symbolic) and data-driven (representation learning) Al traditions.
- GeoAl is used in urban design, disaster response, transport, precision agriculture, crime, privacy, conflict studies, and many other areas.
- Al systems already started to act on the world, our task is to ensure these systems also **perceive** our world (ideally similar to us...).


THE URBAN DATA LANDSCAPE

- Urban data sources range from **social sensing** (social media, mobile phones), in-situ sensors, to satellite imagery.
- In some areas, we are **drowning in data**:
 - Continuous traffic, pedestrian sensors in city centers
 - Reviews for top 10 locations
 - (High-resolution) satellite imagery
 - Street network data
- In other areas, we are **starving for data**:
 - Crime and perceived safety (known but not reported)
 - Walkability (features present, but unclear semantics)
 - Points Of Interest (beyond common attributes, point-coordinates)
 - Vague Cognitive Regions (beyond common names)
 - Events (and spatiotemporal data more generally)
 - Underserved groups/areas (e.g., air quality)
- **GeoAl** studies how to **extract knowledge** out of data and how to close data gaps.

SPATIALLY-EXPLICIT GEOAI METHODS FOR GENAI

- Spatially-explicit GeoAl addresses common gaps of more general Al models, e.g., topology, adjacency, connectivity.
- This is key for accurate spatial structure, realistic agent movement, policy experiments, training data generation.

Data Semantics is Tricky

Bundesland	Unfälle mit Schulkindern (6–15 Jahre) AUF DEM SCHULWEG	Verletzte Schulkinder (6-15 Jahre) AUF DEM SCHULWEG	Getötete Sk. (6-15 Jahre) Auf dem Schulweg
Burgenland	3	8	-
Kärnten	29	31	-
Niederösterreich	78	86	-
Oberösterreich	73	79	-
Salzburg	33	30	-
Steiermark	48	59	-
Tirol	47	51	-
Vorarlberg	29	27	-
Wien	79	80	-
Österreich	419	451	-

Table: unfälle mit Schulkindern, verletzte und getötete Schulkinder 2024 nach Bundesland

- How many kids got **injured** in Vienna?
- How many accidents involved more than one child?
- How many kids **died** in accidents in Vienna?

The Dangers of Data-Poor Methods & Models

- Human movement is shaped by both social and physical space, but trajectory analysis often uses only abstract (Euclidean) space/measures.
- Small changes that seem minor in abstract space can have major real-world impacts once mapped onto actual geography.

- **Synthetic** trajectories are used to protect privacy, e.g., in insurance.
- However, the measures used to guarantee their similarity are still data-poor.

Knowledge Graphs: Data Backbone for AI Systems

- Knowledge graphs (KGs) represent places, events, people, entities, and their rich relationships as a human and machine-readable and reasonable network.
- Two main approaches
 - Knowledge Representation & Reasoning (KRR): Uses rules, (logic) axioms for declarative representation and deductive inference but cannot handle noise or missing data. Example:

```
oneWay(Street) \land movesAgainstDirection(X, Street) \Rightarrow bike(X)
```

- Representation Learning (RL): Learns latent representations (embeddings) for places and relationship from large amounts of high-quality data, capturing patterns not easily stated in rules.
- E.g., X starts their day here, so it is likely their home location.
- Combining KRR and RL enables both explicit (deductive) reasoning and flexible pattern discovery.

GeoEnrichment using Knowledge Graphs

Knowledge graphs can be used as context provider to enrich models on-the-fly.

- They are now also used for **RAG** by many LLM/chatbots to prevent hallucination.
- For instance, KnowWhereGraph contains 29 billion graph statements about the world.